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Multi-fidelity modeling methods leverage on the concatenation of data sets presenting enormous diversity in terms of 

information, size, and behavior. Pieces of information of diverse fidelity and complexity complement each other, leading 

to improved estimate accuracy. Multi-fidelity regression models bring clear advantages to the aircraft preliminary design 

phase, when data from computer simulations and preliminary experimental tests are exploited to define the best feasible 

configuration. At this stage, prediction errors i.e., the difference between a predicted parameter and its actual value after 

product completion and testing, should ideally not exceed a few percent.  

 

In a multi-fidelity setting, it is fundamental to establish the correct hierarchy in terms of data credibility w.r.t. the reality 

of interest. Unfortunately, the complexity characterizing aerospace applications generally makes the direct estimation of 

data fidelity difficult, if not intractable, leaving ground to modeling biases. A resounding example is the NASA Common 

Research Model (CRM) [4], a wind-tunnel test devised for the purpose of validating specific applications of 

Computational Fluid Dynamics (CFD). In fact, the aircraft model underwent significant aeroelastic deformations during 

the experimental campaigns [1], thus frustrating the design efforts which target the fostering of fluid dynamic phenomena 

of interest for research and development e.g., flow separation. 

 

For the CRM case, CFD possibly outperforms wind-tunnel tests in predicting the reality of interest i.e., the aerodynamic 

performances of the unbent design. Surely, the establishing of any specific fidelity hierarchy among computation and 

wind-tunnel data is at least questionable. In other words, the Modeler’s belief plays a prominent role, making the modeling 

approach strongly hypotheses-driven and, hence, inherently biased [2].  

 

The current state-of-the-art offers a plethora of modeling techniques. We focus on multi-fidelity co-kriging methods 

which allow to surrogate a complex physical system using data from approximated models, proposing an extension of the 

formulation developed in [3]. The goal is to overcome possible limitations inherent the sequential construction of multi-

fidelity surrogates models, developing a methodology robust to prior modeling biases concerning the alleged fidelity of 

the available data sets.  

That is, we aim at developing an agnostic framework which is capable of recognizing the coherence of models predictions 

w.r.t. the reality of interest and, at the same time, capable of neglecting inaccurate, or wrong, information. It will be shown 

that this capability is particularly relevant whenever the Modeler does not select the appropriate ordering for the sequential 

construction of the multi-level surrogate. Moreover, we will show how the proposed formulation can also be exploited to 

obtain invaluable insights about the physics underlying the reality of interest.  

Eventually, we also provide perspectives concerning the future deployment of the proposed methodology, with particular 

reference to Bayesian optimization methods and to the efficient construction of databases. 

 

 

Credits: NASA Common Research Model (CRM) test model https://commonresearchmodel.larc.nasa.gov 


