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The MONNALISA Project
MOdelling NoNlinear Aerodynamics of LIfting SurfAces

1/42

Focused on the development of a novel methodology to generate informative data, both from experiments and numerical simulations, and use
them to increase the accuracy of low-order models for an extended range of conditions.

Develop Uncertainty Quantification techniques to select the
most critical configurations on which expensive investigation
methods will be employed, the remaining configurations being
evaluated by means of cheaper tools.

To produce a reliable database concerning the aerodynamic characteristics of unconventional tail-plane surfaces.
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Wind tunnel experiments



Research question
In multi-fidelity approaches, information of diverse fidelity and complexity complement each other, leading to improved

estimate accuracy and to a minimization of the cost associated with parametrization.

Examples:

Typically (but not always correctly), people assume that resources requirements are proportional to accuracy.

The more expensive, the better it is!

People also generally assume that experiments are more accurate than computations

Computations must predict the experiment!
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Require establishing of a fidelity hierarchy among the available models (data), introducing inherent modelling biases!



Research question

A resounding example is the NASA Common Research Model (CRM). The CRM test cases were devised for the purpose 

of validating specific applications of Computational Fluid Dynamics (CFD). 
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NASA Common Research Model (CRM) test
model https://commonresearchmodel.larc.nasa.gov

In multi-fidelity approaches, information of diverse fidelity and complexity complement each other, leading to improved

estimate accuracy and to a minimization of the cost associated with parametrization.

Require establishing of a fidelity hierarchy among the available models, introducing inherent modelling biases!



Research question

Is it possible to develop an agnostic multi-fidelity framework for improving prediction accuracy?

A resounding example is the NASA Common Research Model (CRM). The CRM test cases were devised for the purpose 

of validating specific applications of Computational Fluid Dynamics (CFD). 
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NASA Common Research Model (CRM) test
model https://commonresearchmodel.larc.nasa.gov

In multi-fidelity approaches, information of diverse fidelity and complexity complement each other, leading to improved

estimate accuracy and to a minimization of the cost associated with parametrization.

Require establishing of a fidelity hierarchy among the available models, introducing inherent modelling biases!



Part I:
developing an agnostic multi-fidelity modelling 

framework

5/42



Setting the mindset
We refer to the reality of interest as a physical process described by an unknown model 

Note that the indexing l =1, …, L-1 does not indicate any particular ordering or preferences among the available models

! ∶ Ω ⊂ ℝ! ⟼ℝ

The reality of interest can possibly be measured or approximated by models M, either computational or experimental (we will make no 
distinction), to collect data of different fidelity

Being l = 1, …, L and L our reality of interest

!! = #",!, … , #$!,! be the set of &! training points s.t. #%,! ∈ Ω ⊂ ℝ&

+! = ,",!, … , ,$!,! be a set of noisy observations, assuming that ,%,! = -! #%,! + /%,!
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Gaussian Process
A Gaussian (or stochastic) process is a collection of indexed normal random variables generalizing the concept of a probability distribution to functions

In regression problems, a GP is defined as a function approximator !" #"
#
$ %" , ' $, $$; Θ"

GPs are supervised lazy Machine Learning (ML) models that can be employed, among many other scopes, to approximate multidimensional functions
and to ultimately make predictions

The kernel function K measures the similarity between observations and allows for predicting the value at an unseen point.
A parameterised kernel is typically used to fit a Gaussian process to data (model selection).

Image from C.E. Rasmussen and C.K.I. Williams, “Gaussian Processes for Machine Learning”, the MIT Press, 2006 ISBN 026218253X
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The prediction is not just an estimate for that point, but also has uncertainty.



Gaussian Process
A Gaussian (or stochastic) process is a collection of indexed normal random variables generalizing the concept of a probability distribution to functions
GPs are supervised lazy Machine Learning (ML) models that can be employed, among many other scopes, to approximate multidimensional functions
and to ultimately make predictions

Image from C.E. Rasmussen and C.K.I. Williams, “Gaussian Processes for Machine Learning”, the MIT Press, 2006 ISBN 026218253X
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' *, *$ Θ ≔ ,% exp
− * − *$ &

2,&
& + ,' 34 * − *$

The kernel is the crucial ingredient in a Gaussian process predictor, as it encodes our assumptions about the function which we wish to learn 



Gaussian Process
A Gaussian (or stochastic) process is a collection of indexed normal random variables generalizing the concept of a probability distribution to functions
GPs are supervised lazy Machine Learning (ML) models that can be employed, among many other scopes, to approximate multidimensional functions
and to ultimately make predictions

Image from C.E. Rasmussen and C.K.I. Williams, “Gaussian Processes for Machine Learning”, the MIT Press, 2006 ISBN 026218253X
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Models can be fitted according to different methods e.g., a Maximum Likelihood approach

ℒ + !, Θ, 2% = −
1
2+

' 6 7, 7( Θ + 2%)I
*"+ −

1
2 log 6 7, 7( Θ + 2%)I



Gaussian Process
A Gaussian (or stochastic) process is a collection of indexed normal random variables generalizing the concept of a probability distribution to functions
GPs are supervised lazy Machine Learning (ML) models that can be employed, among many other scopes, to approximate multidimensional functions
and to ultimately make predictions

Image from C.E. Rasmussen and C.K.I. Williams, “Gaussian Processes for Machine Learning”, the MIT Press, 2006 ISBN 026218253X
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5 $∗ ≜ 7 # 8, 9, $∗ = ' $∗, 9 Θ ' 9, 9 Θ + ;)&< *%8

= $∗ = ' $∗, $∗ Θ − ' $∗, 9 Θ ' 9, 9 Θ + ;)&< *%' 9, $∗ Θ

The mean prediction and the associated uncertainty can be evaluated according to:



Multi-fidelity surrogates: Kennedy-O’Hagan formulation1

[1] Kennedy, M.C. and O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1, pp.1-13, 2000

They considered predictions and uncertainty analysis from complex computer codes which can be run at different level of

sophistication, defining the following autoregressive model

The training of this model is quite expensive because it requires the inversion of the covariance matrix arising from the

construction of an L-level co-kriging model.

"!~$% &!
" ' (! , * ', '#; Θ!

-! ' = /(!%&) ' -(!%&) ' + "! ,

-(!%&) ' ⊥ "! ' ,
/(!%&) ' = 2!%&

" ' ((("#$)

being
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Multi-fidelity surrogates: Le Gratiet formulation2

[2] Le GraDet, L., MulD-fidelity Gaussian process regression for computer experiments, Ph.D. Thesis, Université Paris-Diderot - Paris VII, 2013. Français. 

In Ref.[2], the authors show that building L independent kriging models is equivalent to building a L-level co-kriging 

model. 

This allows a model complexity reduction since the inversion of L “smaller” covariance matrices is less expensive than 

inverting a single large covariance matrix.

ℳ! ' = /(!#$) ' ℳ(!#$) ' + "! ,

ℳ(!#$) ' ⊥ "! ' ,
/(!#$) ' = 2!#$

& ' ('("#$)

The recursive formulation proposed in [2] substitutes the full model -(!#$) with its approximation ℳ(!#$) by means of a 

Gaussian process modelling the response of the lower level
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Multi-fidelity surrogates: Le Gratiet formulation2

[2] Le GraDet, L., MulD-fidelity Gaussian process regression for computer experiments, Ph.D. Thesis, Université Paris-Diderot - Paris VII, 2013. Français. 

ℳ! ' = /(!#$) ' ℳ(!#$) ' + "! ,

ℳ(!#$) ' ⊥ "! ' ,
/(!#$) ' = 2!#$

& ' ('("#$)

The recursive formulation proposed in [2] substitutes the full model -(!#$) with its approximation ℳ(!#$) by means of a 

Gaussian process modelling the response of the lower level

In the following we will assume that 

"!~$% &!
& ' (! , * ', '(; Θ! with &!

&= 4 ∀6

2(!#$)
& = 1 which reduces the length of ('("#$)to one

In the following we will aim at inferring /(!#$) rather than ('("#$)
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Multi-fidelity surrogates: Le Gratiet formulation2

[2] Le GraDet, L., MulD-fidelity Gaussian process regression for computer experiments, Ph.D. Thesis, Université Paris-Diderot - Paris VII, 2013. Français. 

The recursive formulation proposed in [2] substitutes the full model -(!#$) with its approximation ℳ(!#$) by means of a 

Gaussian process modelling the response of the lower level

<! # = =(!*")<(!*") # + >! #, !! =(!*"), Θ! >! !!, !! =(!*"), Θ! + 2!)I
*" +! − =(!*")<(!*") # ,

And

?! #, #′ = >! #, #′ =(!*"), Θ! − >! #, !! =(!*"), Θ! >! !!, !! =(!*"), Θ! + 2!)I
*" >! !!, #′ =(!*"), Θ! ,

Where, being ⨀ the element by element matrix product, >

>! B, C =(!*"), Θ! = =(!*")) ⨀?(!*") B, C + 6! B, C Θ! .
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Multi-fidelity surrogates: Increasingly Including Recursive Strategy

We propose an increasingly including strategy in which all the (l-1) models are included at once. 

That is, we seek an extension of [2] where the lower predictor consists in a linear combination of all previous levels, with coefficients =!+-!
!

For convenience we write

<-! # =! ≡ ∑!+-! =!+
! <!+ # , ?-! #, #′ =! ≡ ∑!+-! =!+

! )
⨀?!+ #, #′ .

With these notations, =! becomes a vector and the expression for the mean and the covariance become:

<! # = <-! # =! + >! #, !! =!, Θ! >! !!, !! =!, Θ! + 2!)I
*" +! − <-! # =! ,

?! #, #′ = >! #, #′ =(!*"), Θ! − >! #, !! =!, Θ! >! !!, !! =!, Θ! + 2!)I
*" >! !!, #′ =!, Θ! ,

where >
>! B, C =!, Θ! = ?-! B, C =! + 6! B, C Θ! .

15/42

[2] Le GraDet, L., MulD-fidelity Gaussian process regression for computer experiments, Ph.D. Thesis, Université Paris-Diderot - Paris VII, 2013. Français. 



Multi-fidelity surrogates: graphical comparison

Standard Recursive
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Increasingly Recursive



Training multi-fidelity surrogates

We apply a Maximum Likelihood method (ML): we aim at maximizing the negative marginal log-likelihood

Other approaches are possible e.g., Leave-One-Out (LOO) cross validation, Monte-Carlo Markov-Chain (MCMC)

At each level, the multi-fidelity regression problem requires the estimation of the =! (or =(!*") in the standard formulation), Θ! and 2!)

parameters.

Thanks to the recursive formulation, the estimation of these parameters can be done sequentially, from the lowest to the highest level.

ℒ 9! :! , /! , Θ! , ;! = −
$
) 9! − =*! :! /! >! :! , :! /! , Θ! + ;!

)I
#$

9! − =*! :! /!

−
$
) log >

! :! , :! /! , Θ! + ;!
)I
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Being >! C, D /! , Θ! = E*! C, D /! + *! C, D Θ!



Evaluating the performances
We will be comparing different approaches, the Single-Fidelity (SF), the Standard Recursive strategy from Le Gratiet (SR) and our 
Increasingly Recursive approach (IR)

For a fair comparison, we randomize the training data by artificially creating K=100 training sets for each level.

Surrogates models are trained K times and performances are compared in averaged terms

The score performance is included in (-∞, 1]
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Test A
We assume a 1D mapping F: Ω ⊂ ℝ$ ⟼ℝ to be the true model underlying the reality of interest i.e., the target model we

want to approximate ℳ+ ' ≃ F '

F ' = ' sin 8Q' + ', with ' ∈ 0.0, 1.0

We then assume that four models of different fidelity are at our disposal to approximate F '

-1 ' = ',
-2 ' = 0.7' sin 8Q' ,
-3 ' = ' sin 8.2Q' + ',
-4 ' = −5' + 1,

We consider two arbitrarily ordered sequences Z, = -1,-2,-3,-4, F and Z- = -1,-2,-4,-3, F

The following equivalence holds F = -1 + 1.429-2

19/42



Test A

SA

SB

20/42



Test A
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Recall that 

-1 ' = ',
-2 ' = 0.7' sin 8Q' ,
-3 ' = ' sin 8.2Q' + ',
-4 ' = −5' + 1,
F ' = ' sin 8Q' + ',

F = -1 + 1.424-2



Test A

SA

SB
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Test A
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Recall that 

-1 ' = ',
-2 ' = 0.7' sin 8Q' ,
-3 ' = ' sin 8.2Q' + ',
-4 ' = −5' + 1,
F ' = ' sin 8Q' + ',

F = -1 + 1.424-2



Test A

SA

SB

Computational effort for training 100 
surrogates 
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Test B
Ercoftac Classic Collection Database: 

Wall-Mounted 2-D Hump with Oscillatory Zero-Mass-Flux Jet or Suction through a Slot

By Greenblatt Paschal, Yao, Harris, Schaeffler and Washburn

Chosen because of a large experimental database (including both CFD simulations and experiments)
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Test B
Ercoftac Classic Collection Database: 

Wall-Mounted 2-D Hump with Oscillatory Zero-Mass-Flux Jet or Suction through a Slot

By Greenblatt Paschal, Yao, Harris, Schaeffler and Washburn

Euler model

M1 and M2 with increasing grid resolution 

(37k and 83k elements)

Reynolds-Averaged Navier-Stokes model

M3 and M4 with increasing grid resolution

(100k and 132k elements)
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The experiment is our reality of interest



Test B
Ercoftac Classic Collection Database: 

Wall-Mounted 2-D Hump with Oscillatory Zero-Mass-Flux Jet or Suction through a Slot

By Greenblatt Paschal, Yao, Harris, Schaeffler and Washburn
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Test B
Ercoftac Classic Collection Database: 

Wall-Mounted 2-D Hump with Oscillatory Zero-Mass-Flux Jet or Suction through a Slot

By Greenblatt Paschal, Yao, Harris, Schaeffler and Washburn
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Part I: conclusions
Achievements:

• We exposed a weakness of the current multi-fidelity recursive sequential approach

• We proposed a solution at an acceptable computational cost

• Preliminary experiments show that the IR approach has superior averaged performances (even for a multi-

dimensional input space)

• The IR approach can be exploited to obtain physics insights about the reality of interest

Next steps:

• Restoring the space varying weighting of the low levels predictions gT(x)

• Investigate relevance of the multi-level sequence ordering in a more detailed manner 
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Part II:
future perspectives
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We assume a 1D mapping F: Ω ⊂ ℝ$ ⟼ℝ to be the true model underlying the reality of interest i.e., the target model we

want to approximate ℳ+ ' ≃ F '

F ' = ' sin 8Q' + ', with ' ∈ 0.0, 1.0

We then assume that four models of different fidelity are at our disposal to approximate F '

-1 ' = ',
-2 ' = 0.7' sin 8Q' ,
-3 ' = ' sin 8.2Q' + ',
-4 ' = −5' + 1,

We carry out the training of the surrogate using a Bayesian inference approach (Monte-Carlo Markov-Chain, MCMC), to 

obtain a probabilistic characterization of the regression parameters

Bayesian analysis for physics inference
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Bayesian analysis for physics inference
We rely on a classical Bayesian approach for inferring the unknown parameters (=!, Θ! and 2!))

The likelihood was defined earlier and it reads

% 9! /! , Θ! , ;! , :! = −
$
) 9! − =*! :! /! >! :! , :! /! , Θ! + ;!

)I
#$

9! − =*! :! /!

−
$
) log >

! :! , :! /! , Θ! + ;!
)I

% /! , Θ! , ;! 9! , :! ∝ % 9! /! , Θ! , ;! , :! % /! , Θ! , ;! :!

Conveniently, we assume a uniform prior distributions F =!, Θ!, 2! ∼H (min, max)
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Bayesian analysis for physics inference
We rely on a classical Bayesian approach for inferring the unknown parameters (=!, Θ! and 2!))

The likelihood was defined earlier and it reads

% 9! /! , Θ! , ;! , :! = −
$
) 9! − =*! :! /! >! :! , :! /! , Θ! + ;!

)I
#$

9! − =*! :! /!

−
$
) log >

! :! , :! /! , Θ! + ;!
)I

Conveniently, we assume a uniform prior distributions F =!, Θ!, 2! ∼H (min, max)

Bayesian methods allows for introducing some scientific knowledge into the training process e.g., employ physics-informed priors.
Theory Guided Data Science (TGDS)
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% /! , Θ! , ;! 9! , :! ∝ % 9! /! , Θ! , ;! , :! % /! , Θ! , ;! :!



Bayesian analysis for physics inference
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MAP
MLL



Bayesian optimization
We target the lift coefficient of a morphing airfoil and no constraint applies, therefore we seek for

7 = argmax
4∈6

?7 7
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The 4 design parameter: max camber (x1), position of the max camber point (x2), maximum thickness (x3) and the AoA (x4)

• Maximum computational budget: 100 full computational model evaluations

• No early convergence criteria applied

• The low fidelity data base includes 720 points evaluated using the potential flow solver from XFOIL (just few minutes 
required for building the database on a single core desktop machine)

• The mid fidelity database (RANS model, coarse mesh 3.5k) including 30 data points

• One single high fidelity RANS evaluation (57k elements) requires 10 to 40 min on 6 cores



Bayesian optimization
We target the lift coefficient of a morphing airfoil and no constraint applies, therefore we seek for

We implement a sequential approach where a GP surrogate is built to approximate the (unknown) objective function ?7 7

GPs provide a probabilistic characterization of the prediction: allow exploitation/exploration by means of an acquisition function Mℱ(7)

7 = argmax
4∈6

?7 7
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The 4 design parameter: max camber (x1), position of the max camber point (x2), maximum thickness (x3) and the AoA (x4)

• Maximum computational budget: 100 full computational model evaluations

• No early convergence criteria applied

• The low fidelity data base includes 720 points evaluated using the potential flow solver from XFOIL (just few minutes 
required for building the database on a single core desktop machine)

• The mid fidelity database (RANS model, coarse mesh 3.5k) including 30 data points

• One single high fidelity RANS evaluation (57k elements) requires 10 to 40 min on 6 cores



Bayesian optimization
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Efficient Global Optimization (EGO): Bayesian methods take advantage of prior knowledge and data as they became available during 
the design space exploration/exploitation

Low fidelity data
Surrogate construction

Surrogate update

Optimization loop

4∗ = argmax
(∈*

>ℱ(4)

High fidelity simulation SolutionStop?

High fidelity data

Available data



Bayesian optimization
Optimal designs comparison

SF MF MF-2

x1 8.0 8.0 8.0

x2 8.0 8.0 8.0

x3 1.5336 1.5395 1.5520

x4 19.2730 19.5553 19.5925

CL 2.3691 2.3663 2.3690
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Infilling strategies for enriching a database

An acquisition function can be defined to enrich the database according to arbitrary criteria

Since we are targeting an improved knowledge of reality, we aim at reducing prediction variance at level L

Once x* is defined, we can select the level to sample according to the maximum of

∆.&' /
0 = ;+) ' − ;+/0

) ' with i = 1, …, L-1.

∆.&' /
0 is the i-th level contribution to ;+) ' . ;+/0

) ' is obtained by zeroing the i-th regression coefficient.

'∗ = argmax
/∗∈4

;+) '
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Infill strategies for enriching the database
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Part II: conclusions

• The IR approach can be exploited to obtain physics insights about the reality of interest. LOO-CV/MCMC-

based methods are already available but they still needs a thorough assessment

• Multi-fidelity models bring clear advantages to design problems. We expect to demonstrate the further 
advantages of our agnostic formulation for a real application (aerodynamic optimization of the tail of a 

commercial aircraft).

• The proposed agnostic formulation opens the path to the development of novel strategies for efficiently 
building multi-fidelity databases.

Perspectives:
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Questions?
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